Каскадный механизм гемокоагуляции

Коагуляционный механизм гемостаза

Каскадный механизм гемокоагуляции

Коагуляционный (вторичный) гемостаз осуществляется с помо­щью свертывания крови (гемокоагуляции).

При этом растворимый белок плазмы крови фибриноген переходит в нерастворимое со­стояние – фибрин, в результате чего образуется студнеобразный сгусток, закрывающий просвет поврежденного сосуда.

В сверты­вании крови принимают участие много факторов свертывания крови. Они содержатся в плазме крови, форменных элементах и в тканях. Как правило, плазменные факторы свертывания крови об-

разуются в печени, и для образования большинства из них необхо­дим витамин К. Плазменные факторы обозначаются римскими цифрами. Все факторы свертывания крови – в основном белки, большинство из них являются ферментами, в крови находятся в неактивном состоянии, активируются друг другом в процессе свер­тывания крови. Активные факторы обозначаются с буквой а, на­пример, 1а, Па и т.д.

Фактор I (фибриноген) белок плазмы крови, под влияни­ем тромбина переходит в фибрин, волокна которого составляют основу тромба. Принимает участие в агрегации тромбоцитов.

Фактор II (протромбин) под влиянием протромбиназы пе­реходит в тромбин (фактор Па).

Фактор III (тромбопластин) входит в состав мембран кле­ток всех тканей и форменных элементов крови. Активирует фактор VII и, вступая с ним в комплекс, переводит фактор X в Ха. В плазме в физиологических условиях практически не содержится.

Фактор IV (Са2+) участвует в образовании комплексов фак­торов свертывания крови, входит в состав протромбиназы. Спо­собствует агрегации тромбоцитов, связывает гепарин. Принимает участие в ретракции сгустка и тромбоцитарной пробки, тормозит фибринолиз.

Фактор V (проакцелерин) глобулин, активируется тром­бином. Усиливает действие фактора Ха на протромбин (входит в состав протромбиназы).

Фактор VI исключен из классификации, так как это фактор Уа.

Фактор VII (проконвертин) принимает участие в формиро­вании протромбиназы по внешнему механизму. Активируется фак­торами III, ХНа, 1Ха, Ха.

Фактор VIII (антигемофилъный глобулин А) образует ком­плексную молекулу с фактором Виллебранда и специфическим ан­тигеном, активируется тромбином. Совместно с фактором 1Ха спо­собствует переводу фактора X в Ха.

Фактор IX (антигемофилъный глобулин В) активирует факторы X и VII.

Фактор X (Стюарта – Прауэра) является составной час­тью протромбина.

Фактор XI (предшественник тромбопластина) активи­руется фактором ХПа. Необходим для активации фактора IX.

Фактор XII (Хагемана, или контакта). Место синтеза не установлено. Активируется отрицательно заряженными поверхно­стями, адреналином, калликреином. Запускает внутренний меха­низм образования протромбиназы и фибринолиза, активирует фак­торы XI, VII и переводит прокалликреин в калликреин.

Фактор XIII (фибринстабилизирующий фактор, фибри-наза). Содержится практически во всех тканях и форменных эле­ментах. Стабилизирует фибрин.

Фактор XIV (фактор Флетчера – прокалликреин).Уча­ствует в активации факторов XII, IX и плазминогена. Переводит кининоген в кинин. Активируется фактором ХПа.

Фактор XV (фактор Фитцджеральда, Фложек, Вильям-са). Высокомолекулярный кининоген. Образуется в тканях. Акти­вируется калликреином. Принимает участие в активации фактора XII и переводе плазминогена в плазмин.

Процесс свертывания крови — это ферментативный, цепной (каскадный), матричный процесс перехода растворимого белка фибриногена в нерастворимый фибрин. Каскадным он называет­ся потому, что в процессе гемокоагуляции происходит последова­тельная цепная активация факторов свертывания крови.

Сверты­вание крови является матричным процессом, так как активация факторов гемокоагуляции осуществляется на матрице. Матрицей могут быть фосфолипиды мембран разрушенных форменных эле­ментов (главным образом тромбоцитов) и обломки клеток тканей.

Процесс свертывания крови осуществляется в три фазы (рис. 6.3).

Первая фаза образование протромбиназы – может прохо­дить по внешнему и внутреннему механизму. Внешний механизм предполагает обязательное присутствие тромбопластина (фактор III), внутренний же связан с участием тромбоцитов (фактор Р3) или разрушенных эритроцитов.

Вместе с тем внутренний и внешний пути образования протромбиназы имеют много общего, так как ак­тивируются одними и теми же факторами и приводят в конечном итоге к появлению одного и того же активного фермента – фактора Ха, выполняющего функции протромбиназы.

При этом тромбопла-стин служит матрицей, на которой в присутствии ионов Са2+ раз­вертываются ферментативные реакции.

Вторая фаза процесса свертывания крови – переход фактора II в фактор Па – осуществляется под влиянием протром­биназы (фактор Ха) в присутствии фактора Уа и сводится к проте-олитическому расщеплению протромбина, благодаря чему появля­ется активный фермент тромбин.

Третья фаза процесса свертывания крови – переход фибри­ногена в фибрин – протекает в три этапа. На первом этапе под влиянием фактора Па от фибриногена отщепляются фибринопеп-тиды и образуется фибрин-мономер (фактор 1т).

На втором, не­ферментативном, этапе благодаря процессу полимеризации фиб­рина-мономера формируются олигомеры и димеры фибрина, из которых за счет продольного и поперечного связывания образу­ются протофибриллы – легкорастворимый фибрин, или фибрин 5, быстро лизирующийся под влиянием протеаз (плазмина, трип­сина).

На третьем, ферментативном, этапе фактор XIII (фибрина-за, фибринстабилизирующий фактор) после активации тромбином в присутствии ионов Са2+ «прошивает» фибринополимеры допол­нительными перекрестными связями, в результате чего появ­ляется трудно растворимый фибрин, или фибрин 1 0п5о1иЫе).

В результате этой реакции сгусток становится резистентным к фибринолитическим (протеолитическим) агентам и плохо под­дается разрушению.

Восстановление кровотока в поврежденном сосуде осуществ­ляется с помощью фибринолиза.

Фибринолиз

В крови даже в отсутствие повреждения сосудов посто­янно происходит превращение небольшого количества фиб­риногена в фибрин. Это превращение уравновешивается непре­рывно протекающим фибринолизом. Лишь в том случае, когда механизмы свертывания дополнительно стимулируются в резуль­тате повреждения ткани, образование фибрина в области повреж-

дения начинает преобладать и наступает местное свертывание кро­ви. Фибринолиз всегда сопровождает процесс свертывания крови и активируется факторами, принимающими участие в этом процес­се. Ферментом, разрушающим фибрин, является плазмин (фибри-нолизин), который в крови находится в неактивном состоянии в виде профермента плазминогена.

Активация плазмина обеспечивается механизмами, аналогич­ными внешнему и внутреннему свертывающим механизмам. Плаз­мин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину.

Плазмин отщепляет от фибрина путем гидролиза растворимые пептиды, ко­торые тормозят действие тромбина и таким образом препятствуют дополнительному образованию фибрина. Плазмин расщепляет так­же другие факторы свертывания – фибриноген, факторы V, VII, IX, XI, XII.

Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свертываемость крови.

Внешний механизм активации фибринолиза осуществля­ется при участии тканевых активаторов, которые синтезируются главным образом в эндотелии сосудов. К ним относятся тканевый активатор плазминогена и урокиназа.

Последняя также образует­ся в юкстагломерулярном комплексе почки.

Внутренний меха­низм активации фибринолиза осуществляется плазменными активаторами, в частности факторами УНа, ХПа, калликреином, ко­торый проявляется лишь в присутствии так называемых проакти-ваторов.

Важнейшие из проактиваторов (один из них – прокаллик-реин) – это лизокиназы, высвобождающиеся из клеток крови при травматических или воспалительных повреждениях тканей. В плаз­ме находятся и ингибиторы фибринолиза. Фибринолитическая ак­тивность крови во многом определяется соотношением активато­ров и ингибиторов фибринолиза.

При ускорении свертывания крови и одновременном торможе­нии фибринолиза создаются благоприятные условия для развития тромбозов.

Наряду с ферментативным фибринолизом существует так называемый неферментативный фибринолиз,который обус­ловлен комплексными соединениями естественного антикоагу­лянта гепарина с ферментами и гормонами.

Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибрин-мономеров и фиб­рина 3 (В. А. Кудряшов).

Поскольку в организме даже в нормальных условиях существу­ет опасность свертывания крови и образования тромбов, сформи­ровались и антисвертывающие механизмы, поддерживающие кровь в жидком состоянии.

Предыдущая35363738394041424344454647484950Следующая

Дата добавления: 2016-04-11; просмотров: 545; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/7-75915.html

Page 3

В крови содержатся вещества, предотвращающие и замедляющие процесс свертывания крови – ингибиторы (естественные антикоагулянты).

Они делятся на две группы: первичные (самостоятельно синтезируемые в печени, легких и других органах) и вторичные (образуются в процессе свертывания крови и фибринолиза).

К первичным ингибиторам относят антитромбин III и гепарин, обеспечивающие 80 % антикоагулянтной активности крови, а также антитромбин IV (б-макроглобулин), дающий 10 % антикоагулянтной активности.

К вторичным ингибиторам относят прежде всего отработанные факторы свертывания (фибрин, активные факторы ХIа и Vа, фибринпептиды А и В, отщепляемые от фибриногена), а также продукты фибринолиза, в частности антитромбин VI. Наиболее изученными первичными антикоагулянтами являются антитромбин III (АТ-III) и гепарин.

Антитромбин-III- гликопротеид, мигрирующий с б2-глобулинами и локализованный преимущественно в интиме крупных сосудов. Его биосинтез осуществляется в печени и в эндотелиальных клетках. АТ-III тормозит активность тромбина, факторов IXа, Xа, XIа, ХIIа, плазмина и калликреина.

Гепарин относится к серосодержащимI кислым мукополисахаридам (гликозаминогликан), синтезируется в базофильных клетках крови и тканей, а также в тучных клетках соединительной ткани. Гепарин содержится почти во всех тканях организма и является антикоагулянтом прямого и широкого спектра действия.

Он проявляет свой антикоагулянтный эффект на факторы гемокоагуляции непосредственно в крови. Гепарин тормозит процесс образования протромбиназы, блокирует превращение протромбина в тромбин, препятствует взаимодействию тромбина с фибриногеном – тормозит протекание всех фаз процесса гемокоагуляции.

Антикоагулянтный эффект гепарина объясняется его способностью образовывать комплексные соединения с тромбогенными белками – протромбином, тромбином, фибриногеном. Разрушение гепарина осуществляется ферментом гепариназой. Гепарин усиливает ингибирующий эффект АТ-III.

Изучено несколько механизмов инактивации тромбина АТ-III и гепарином: 1) АТ-III взаимодействует с тромбином (медленный процесс), затем к комплексу присоединяется гепарин, что ускоряет нейтрализацию энзима; 2) гепарин взаимодействует с тромбином, обеспечивая его быстрое связывание с АТ-III; 3) гепарин взаимодействует с АТ-III, ускоряя его связывание с тромбином.

Источник: https://vuzlit.ru/1163549/koagulyatsionnyy_mehanizm_gemostaza

Механизм свёртывания крови – как происходит данный процесс и фазы свертывания

Каскадный механизм гемокоагуляции

Кровь соединительная ткань живого организма, находящаяся в жидком состоянии. В состав крови человека входит жидкая часть, называемая плазмой, и форменные элементы, основная часть которых сформирована из эритроцитарных клеток, лейкоцитов, тромбоцитов. Появление и процесс созревания клеточных компонентов крови известны как «гемопоэз». Движение крови происходит в замкнутой системе.

Продолжительное время наука занимается изучением механизма свертывания крови. Направление медицины, которая занимается изучает кровеносной системы и патологических процессов, возникающих в этой области, называется гематологией. Исследованием механизмов гемокоагуляции занимается раздел гематологии – гемостазиология.

Что собой представляет система свертывания человеческой крови?

Механизм свертывания крови, или гемокоагуляция, – сложный процесс, состоящий из нескольких последовательных фаз и отвечающий за прекращение кровотечений при нарушении целостности сосудов. Наряду с сосудисто-тромбоцитарным гемостазом и фибринолизом процесс свертывания важнейший этап функционирования гемостаза организма.

В результате гемокоагуляции кровь преобразуется из жидкого состояния в желеобразное вплоть до образования тромба. Подобная трансформация возможна благодаря переходу белка фибриногена, растворенного в плазме крови, в нерастворимый фибрин, который образует своеобразную сеть из нитей, задерживающих клеточные элементы крови.

За регуляцию процесса гемокоагуляции отвечает гуморальная и нервная системы. Касаясь вопроса, какие клетки участвуют в процессе свертывания крови у человека, следует отметить, что главная роль в нем отводится тромбоцитам, хотя непосредственное участие принимают все форменные элементы.

Благодаря тромбоцитам уплотняется структура образовавшегося сгустка крови, который ускоряет заживления раны посредством стягивания краев и снижает шанс заражения, что важно для здоровья животного и человека.

Эффективность механизма зависит от взаимодействия 15 веществ (факторов) крови, относящихся к классу белков.

Важно! У физически здорового человека с нормальной свертываемостью после повреждения сосудистой стенки механизм гемокоагуляции запускается практически сразу. Формирование тромба происходит в пределах 8 минут.

Гемокоагуляция ферментативный процесс, происходящий с участием особого фермента – тромбина, с помощью которого совершается преобразование растворенного в плазме фибриногена в нерастворимый белок фибрин.

Основоположником теории стал физиолог Александр Александрович Шмидт, который предложил ее в 1863-1864 годах.

Современное, более расширенное, представление о гемокоагуляции и методы биохимического анализа основаны на первой теории о механизме свертывания, предложенной А.А. Шмидтом.

В крови человека на постоянной основе находится небольшое количество тромбина в неактивном состоянии. Такой тромбин называется протромбином и образуется в печени.

Соли кальция и тромбопластин, находящиеся в плазме крови, воздействуют на протромбин, преобразуя его в активный тромбин.

Внимание! Тромбопластин не содержится в крови.

Его появление обусловлено разрушением тромбоцитов либо нарушением целостности структуры иных клеток организма.

Процесс формирования тромбопластина сложен. В нем принимают участие несколько белков крови. При отсутствии некоторых из них гемокоагуляция замедляется либо полностью нарушается, что становится опасной патологией, способной приводить к сильным потерям крови даже при малых повреждениях. Такое заболевание, относящееся к числу коагулопатий, известно под названием «гемофилия».

Фазы свертывания крови

Процесс гемокоагуляции представляется как проферментно-ферментный каскад, в котором проферменты, приобретая активность, способны к активации остальных факторов свертывания крови.

Презентация каскадной схемы свертывания человеческой крови представлена ученым-коагулологом Моравицем в 1905 году, и до нынешнего времени актуальна. Сам процесс можно кратко описать в виде трех фаз:

  • Первая фаза наиболее сложная и называется фазой активации. После нарушения целостности сосудистой ткани в процессе активации происходит совокупность последовательных реакций. Результатом становится образование протромбиназы и преобразование протромбина в тромбин.
  • Следующая фаза известна как фаза коагуляции. На коагуляционной стадии высокомолекулярный белок фибрин образуется из фибриногена.
  • На третьей и заключительной фазе происходит формирование фибринового сгустка, обладающего плотной структурой.

Несмотря на то что предложенная Моравицем схема используется до сих пор, изучение процесса гемокоагуляции получило значительное развитие и позволило сделать немалое число открытий касательно происходящих реакций. Открыты и изучены белки, участвующие в свертывании крови.

Факторы свертывания крови

К факторам свертывания принято относить ферменты и белки, принимающие участие в построении тромба. Находятся они в тромбоцитарных клетках, тканях и плазме крови.

Общепринятые обозначения факторов свертывания крови зависят от местоположения:

  1. Римскими цифрами обозначены та часть, которая локализуется в плазме крови. Из-за местонахождения их принято именовать плазменными факторами.
  2. Активные соединения, расположенные в тромбоцитах, обозначают арабскими цифрами. Им присвоено название «тромбоцитарные факторы».

Внимание! Плазменные факторы гемокоагуляции, вырабатываемые живым организмом, изначально находятся в неактивном состоянии, а при повреждении сосудов происходит их активация и к названию фактора добавляется буква «а».[/note]

К плазменным факторам гемокоагуляции относятся:

  • I – белок фибриноген, синтезируется клетками печени и впоследствии преобразуется в нерастворимый фибрин под воздействием тромбина.
  • II – обозначение протромбина. Его выработка происходит в клетках печени с участием витамина K. Протромбин неактивный вид тромбина.
  • III – тромбопластин, содержащийся в неактивном виде в тканях. Участвует в преобразовании протромбина в тромбин посредством формирования протромбиназы.
  • IV – кальций. Активно участвующее на всех этапах гемокоагуляции вещество. Не расходуется в процессе. Выступает в роли ингибитора фибринолиза.
  • V – лабильный фактор, известный как проакцелерин. Синтез происходит в клетках печени, участвует в образовании протромбиназы.
  • VI – акцелерин, является активной формой проакцелерина. Исключен из современной таблицы факторов гемокоагуляции.
  • VII – проконвертин. Создается клетками печени с использованием витамина K. Становится активным на первой фазе процедуры свертывания и не расходуется во время нее.
  • VIII – обозначение сложного гликопротеида под названием «Антигемофильный глобулин А». Точное место выработки в организме неизвестно, но предполагается, что выработка происходит в клетках печени, почках, селезенке и лейкоцитах.
  • IX – антигемофильный глобулин B или фактор Кристмаса. Вырабатывается печенью не без помощи витамина K. Продолжительное время существует в плазме и сыворотке крови.
  • X – тромботропин или фактор Стюарта-Прауэра. В неактивном виде вырабатывается печенью с участием K и способствует образованию тромбина.
  • XI – фактор Розенталя или антигемофильный фактор C. Синтез происходит в печени. Активирует фактор IX.
  • XII – фактор контакта или Хагемана. Вырабатывается в неактивном виде печенью. Запускает тромбообразование.
  • XIII – фибринстабилизирующий фактор, иначе называемый фибриназой. При участии кальция проводит стабилизацию фибрина.
  • Фактор Фитцжеральда вырабатывается печенью и производит активацию фактора XI.
  • Фактор Флетчера синтезируется в печени, преобразует кинин из кининогена, запускает VII и IX факторы.
  • Фактор Виллебранда содержится в тромбоцитах, вырабатывается в эндотелии.

Подробно о факторах гемокоагуляции можно узнать из видео ниже:

Различают внешний и внутренний путь свертывания крови в зависимости от того, какой механизм запускает гемокоагуляцию. В обоих случаях активация факторов начинается на поврежденных клеточных мембранах.

При внешнем пути свертывания крови в роли запускающего фактора выступает тромбопластин, который попадает в кровь при травме сосудистой ткани и совместно с фактором VII оказывает энзиматическое воздействие на фактор X.

Последний с участием ионов калия вступает в связь с фактором V и фосфолипидами тканей, образуя в результате протромбиназу. Путь свертывания, при котором поступление сигнала идет от тромбоцитов, называется внутренним, в этом случае активируется фактор XII.

Оба механизма инициации свертывания взаимосвязаны, поэтому данное разделение условное.

Норма гемокоагуляции и ее патофизиология

У физически здорового взрослого человека процесс свертывания крови занимает от 5 до 7 минут. Большая его часть отводится на первую фазу, во время которой образовывается протромбин, используемый организмом для формирования тромба. Благодаря ему происходит закупорка разрушенной стенки сосуда, вследствие чего предотвращается сильная кровопотеря.

Последующие фазы происходят значительно быстрее – в пределах нескольких секунд. Скорость образования тромба зависит от скорости синтеза протромбина.

Время выработки последнего находится в тесной связи с наличием в организме достаточного количества витамина K, при дефиците которого есть риск возникновения сложностей в остановке кровотечения.

Внимание! Процесс свертывания крови у детей происходит значительно быстрее.

У ребенка в возрасте 10 лет на данное действие затрачивается от 3 до 5 минут. С возрастом скорость гемокоагуляции снижается.

Гипокоагуляция

Патологическое состояние, при котором у человека заметно снижена эффективность механизма свертывания крови, называется гипокоагуляцией. Подобное отклонение возникает из-за целого ряда причин:

  • Объемные кровопотери из-за серьезных травм. В такой ситуации вместе с кровью человек теряет огромное количество форменных клеток, различных ферментативных веществ и факторов свертывания.
  • Патологические состояния печени. В их число входит гепатит. Результатом нарушений в работе печени становится угнетение синтеза факторов свертывания.
  • В ряде случаев гипокоагуляция возникает из-за анемии либо дефицита витамина K.
  • Причина может иметь наследственный характер, например: наследственное нарушение деятельности тромбоцитарных клеток.

При подозрениях на патологию правильным решением станет обращение к врачу, который проведет ряд исследований и лабораторных анализов для подтверждения диагноза и определит его первопричины. Схема лечения составляется индивидуально в зависимости от того, что стало фактором возникновения заболевания.

В любом случае понадобится комплексный подход, включающий прием лекарственных препаратов и изменение рациона. В меню больного включается больше продуктов, содержащих калий, фолиевую кислоту, кальций. Решить эти вопросы поможет квалифицированный специалист в медицинском учреждении. Самолечение при подобных отклонениях неприемлемо.

[tip]Важно! Если причина заболевания кроется в наследственности, терапия может продолжаться в течение всей жизни пациента.[/tip]

Гиперкоагуляция

Гиперкоагуляция противоположное состояние, при котором у пациента наблюдается повышенный показатель свертываемости, что чревато опасностью формирования тромбов.

Гиперкоагуляция зачастую развивается на фоне:

  • Обезвоживания организма, вызванного отклонениями в работе почек, жидким стулом и продолжительной рвотой, ожогами.
  • Сбоями в работе печени, влекущими дефицит в выработке гормонов и ферментативных веществ. Способен повлиять цирроз и гепатит.
  • У женщин такое развитие событий обусловлено использованием оральных контрацептивов, оказывающих влияние на гормональный фон.
  • При беременности. В период вынашивания ребенка ввиду некоторых изменений физиологии в женском организме возможно повышение активности системы свертывания. Иногда процесс может выйти за пределы допустимых рамок и привести к печальным последствиям.
  • Некоторые формы злокачественных заболеваний системы кроветворения и многое другое.

Чтобы произвести оценку патологии и назвать причину ее возникновения, понадобится несколько процедур, включающих общий анализ крови, АЧТВ (диагностика эффективности внутреннего и общего пути свертывания), коагулограмму и т.д.

Сдачу материала для проведения анализов производят на голодный желудок и ранним утром. С момента последнего приема пищи должно пройти 8 часов. Употребление спиртных напитков исключить. В случае использования медикаментов заранее уведомить лечащего врача.

Краткую информацию об отклонениях показателей свертываемости крови и технологии, способной их установить, можно почерпнуть из видео, представленного ниже.

Загрузка…

Источник: https://dlja-pohudenija.ru/serdcze/analiz-krovi/fiziologiya-mehanizma-svyortyvaniya-krovi-pri-povrezhdenii-sosudistoj-sistemy-organizma

47.Внутренний путь системы гемокоагуляции, каскадно-комплексная схема вторичного(гемокоагуляционного) гемостаза

Каскадный механизм гемокоагуляции

«Каскадная» модель процесса свертывания крови (в 1964 г). Она подразделяет процесс свертывания крови на первичный/ сосудисто-тромбоцитарный, гемостаз и вторичный/коагуляционный, гемостаз.

Эта модель сохраняет свое значение только как отражение процессов свертывания крови in vitro. Первыми на повреждение сосудистой стенки реагируют сами кровеносные сосуды и клетки крови, прежде всего тромбоциты.

В связи с этим сосудисто-тромбоцитарный гемостаз принято называть первичным гемостазом. Последующее вовлечение плазменного каскадного механизма активации коагуляционных факторов свертывания крови носит название вторичного гемостаза.

Оба этих механизма взаимосвязаны и функционируют сопряженно. Своего рода третьим этапом свертывания крови является процесс лизиса кровяного сгустка (фибринового тромба) — фибринолиз.

Коагуляционный гемостаз. Биологическое значение коагуляционного гемостаза, или процесса свертывания крови, заключается в образовании фибринового тромба в месте повреждения стенки сосуда.

Свертывание крови — сложный многоэтапный ферментный процесс , в котором участвуют ряд белков- протеаз, белки-протеазы, неферментные белки- акцелераторы ,обспечивающие взаимодействие факторов свертывания на фосфолипидных матрицах, ионы кальция..

В процессе коагуляционного гемостаза выделяют три каскадных пути, или механизма: «внутренний», «внешний» и «общий» механизм, в которых принимают участие определенные факторы свертывания крови (I Фибриноген, II Протромбин, III Тканевой фактор (тканевой тромбопластин), IV Ионы кальция , V Ас-глобулин проакцелерин, VII Проконвертин, VIII Антигемофильный глобулин (АГГ), IX Фактор Кристмаса (РТС), X Фактор Стюарта– Прауэра, XI РТА-фактор, XII Фактор Хагемана,контактный фактор, XIII Фибрин-стабилизирующий фактор,плазменная трансглутаминаза, Плазменный прекалликреин, фактор Флетчера, Высокомолекулярный кининоген(ВМК),фактор Фитцжеральда, фактор Фложак, Фактор Вильсона, Фактор Виллебранда).

Каскадно- комплексная схема свертывания, отражающая последовательность взаимодействия факторо свертывания.

Условно процесс свертывания крови может быть разделен на 2 фазы: 1)многоступенчатый этап, приводящий к активации протромбина(фактор II) с превращением его в активный фермент –тромбин (фактор IIa),2)конечный этап, в котором под влиянием тромбина фибриноген превращается вначале в мономеры фибрина, а затем – в его полимер, стабилизируется активированным фактором XIII.Первую фазу делят на 2 подфазы –образования протромбиназной активности и образования тромбиновой активности, а также дополнительно выделяют посткоагуляционную фазу- стабилизации фибрина и ретракции сгустка.

­­­­Внутренний путь активации свертывания определяется как коагуляция, инициируемая компонентами, полностью находящимися в пределах сосудистой системы. In vivo это путь существует совместно с внешним. Компоненты внутренней системы: факторы XII,XI,IX,VIII, кофакторы – высокомолекулярный кининоген(ВМК) и прекалликреин(ПК), а также их ингибиторы.

Инициация активации ФXII начинается, когда обнажается отрицательно заряженная поверхность (коллаген) в пределах сосудистой стенки, в результате самоактивации ФXII приводит к конформационным изменениям молекулы с раскрытием его активного серинового центра(ФXIIа),который вызывает активацию его субстратов:ПК,ВМК,ФХI. ПК и ФХI связываются с активирующей поверхностью посредством ВМК. Без ВМК активации обоих проферментов не происходит. ВМК связанный может расщепляться калликреином (К) или ФXIIа. ФXIIа, связанный с поверхностью расщепляет ФXI до ФXIа и прекалликреин до калликреина. Калликреин превращает ВМК в ВМКа и брадикинин. В результате этих реакций комплексы ВМКа/К и ВМКа/ ФXIа размещаются вблизи ФXIIа, где начинается активация процесса свертывания крови, фибринолиз, активация комплемента.

Калликреин в комплексе с ВМКа недостаточно тесно связан с поверхностью и выделяется в жидкую фазу, чтобы взаимодействовать с различными субстратами, включая ФXII, плазминоген, проренин, компонет комплемента С1.

Калликреин также воздействует на ФXIIа, отщепляя фрагмент ФXII(ФXIIf), который сохраняет активный сериновый участок, но утрачивает домен связывания. ФXIIf в жидкой фазе может действовать как мощный активатор прекалликреина: превращать ФVII в ФVIIа, а С1- в активированный С1.

ФXIа, связанный сВМКа, остается тесно прикрепленный к поверхности ,гдеон пространственно приближает проферменты к ФXIIа.С другой стороны, ФXIа расщепляет ВМК, нарушая его кофактрную активность, в результате чего ФXIа отделяется от зоны поверхностной активации.

ФXIа превращает ФIX в ФIXа как в жидкой фазе, так и на тромбоцитарных мембранносвязанных фосфолипидах.

Источник: https://studfile.net/preview/5857680/page:24/

WikiSimptom.Ru
Добавить комментарий